FAQ

General
Academics


Mechanical Engineering is a diverse subject that derives its breadth from the need to design and manufacture everything from small individual parts and devices (e.g., microscale sensors, inkjet printer nozzles) to large systems (e.g., spacecraft and machine tools). The role of a mechanical engineer is to take a product from an idea to the marketplace. To accomplish this, a broad range of skills are needed. Required skills include the ability to understand the forces and the thermal environment that a product, its parts, or its subsystems will encounter; to design them for functionality, aesthetics, and the ability to withstand the forces and the thermal environment they will be subjected to; and to determine the best way to manufacture them and ensure they will operate without failure. Perhaps the one skill that is the mechanical engineer’s exclusive domain is the ability to analyze and design objects and systems with motion.

Since these skills are required for virtually everything that is made, mechanical engineering is perhaps the broadest and most diverse of engineering disciplines. Mechanical engineers play a central role in such industries as automotive (from the car chassis to all its subsystems—engine, transmission, sensors); aerospace (airplanes, aircraft engines, control systems for airplanes and spacecraft); biotechnology (implants, prosthetic devices, fluidic systems for pharmaceutical industries); computers and electronics (disk drives, printers, cooling systems, semiconductor tools); microelectromechanical systems, or MEMS (sensors, actuators, micropower generation); energy conversion (gas turbines, wind turbines, solar energy, fuel cells); environmental control (HVAC, air-conditioning, refrigeration, compressors); automation (robots, data/image acquisition, recognition, and control); and manufacturing (machining, machine tools, prototyping, microfabrication).

Mechanical engineering deals with anything that moves, including the human body, a very complex machine. Mechanical engineers learn about materials, solid and fluid mechanics, thermodynamics, heat transfer, control, instrumentation, design, and manufacturing to realize/understand mechanical systems. Specialized mechanical engineering subjects include biomechanics, cartilage tissue engineering, energy conversion, laser-assisted materials processing, combustion, MEMS, microfluidic devices, fracture mechanics, nanomechanics, mechanisms, micropower generation, tribology (friction and wear), and vibrations. The American Society of Mechanical Engineers (ASME) currently lists 36 technical divisions, from advanced energy systems and aerospace engineering to solid waste engineering and textile engineering.

The breadth of the mechanical engineering discipline allows students a variety of career options beyond some of the industries listed above. Regardless of the particular path they envision for themselves after they graduate, their education will provide them with the creative thinking that allows them to design an exciting product or system, the analytical tools to achieve their design goals, the ability to meet several possibly conflicting constraints, and the teamwork needed to design, market, and produce a system. These skills also prove to be valuable in other endeavors and can help launch a career in medicine, law, consulting, management, banking, finance, and so on.

For those interested in applied scientific and mathematical aspects of the discipline, graduate study in mechanical engineering can lead to a career of research and teaching.
 

Back to top

When was the department established?
The Mechanical Engineering Department at Columbia was established in 1897. It has enjoyed a national and international reputation for much of its history. Between 1950 and 1980, Professors Dudley D. Fuller, Harold G. Elrod, and Vittorio Castelli were the foremost leaders in the field of lubrication theory and practice. In the 1960s, Professor Ferdinand Freudenstein (known as the "Father of Modern Kinematics") revolutionized the field of mechanical design by ushering in the computer age in kinematics synthesis and the design of mechanism. More recently, the department is known for its research contributions in the fields of control theory, manufacturing, thermofluids and biomechanics, with faculty members giving keynote lectures in national and international conferences and receiving best paper awards and professional society awards.

Back to top

Where is the department located?
Columbia's Mechanical Engineering Department is located on the second floor of the Seeley W. Mudd Building, which is located at the northeast corner of Columbia University's Morningside campus. The Morningside campus is located at Broadway and 116th Street in New York City. A general map of the Columbia campus can be found here. Detailed directions and a map to our locations can be downloaded here.

Back to top

How big is the department?
The department currently has 14 full-time, 8 adjunct, and 2 affiliated faculty members. There are currently approx 120 undergraduate and 200 graduate mechanical engineering majors. Additionally 34 sophomores declared as mechanical engineering majors this year.
 

Back to top

How can I contact the department?

You can contact the Mechanical Engineering Department by mail, phone, fax or email:
Columbia University
Department of Mechanical Engineering
Rm. 220 S.W. Mudd Building
500 West 120th Street
New York, NY 10027 USA

cm2883@columbia.edu 
212-854-2966
212-854-3304 (fax)

 

Back to top

Why should I attend Columbia for this subject? What distinguishes Columbia's program from other institutions?
We are a relatively small department with a student/faculty ratio of about 8 to 1 for undergraduates. In your mechanical engineering core curriculum classes and laboratory courses, you will probably have a class size of 60 to 65. This allows our students to participate actively in the learning process and provides many opportunities to be involved in design competitions, projects, and research.

The mechanical engineering program at Columbia University has been designed to take advantage of the unique and outstanding liberal arts education provided by Columbia College. There are 27 nontechnical points required where students can choose from an extensive list of available courses from the college and the school. Many outstanding students in the school have chosen to major in ME. Within the last five years, two valedictorians of our engineering school were ME students. Among the 14 faculty members in the department, five have received teaching awards within the last five years.

The department has over 10,000 square feet of undergraduate laboratories with state-of-the-art equipment including a CNC machine, a rapid prototyping machine, a laser Doppler anemometer, an MTS machine and three new machine tools (high pressure lathe, milling machine, and grinder). The department also has a computer-aided design lab with thirty Dell Precision workstations. All faculty members are active in research and in professional societies. Most have served as editors/associate editors of professional journals.

 

Back to top

What are the requirements for a major or concentration?
The mechanical engineering undergraduate program is designed to provide a broad background in all areas of mechanical engineering while allowing flexibility for students to choose electives from within the Mechanical Engineering Department as well as other departments. The following conditions must be satisfied for the B.S. degree in mechanical engineering:

• Completion of the Mechanical Engineering Core Curriculum. Of the core curriculum, it is strongly recommended that one course, ENME E3105 be taken in the sophomore year.

• Completion of 27 points of nontechnical electives during undergraduate study.

• Completion of 21 points of elective content in the third and fourth years, at least 12 points of technical courses, including 9 points from the Department of Mechanical Engineering. Those remaining points of electives are intended primarily as an opportunity to complete the four-year, 27-point nontechnical requirement. Consistent with professional accreditation standards, courses in engineering science and courses in design must have a combined credit of 48 points. Students should see their advisers for details.

Note: A maximum of up to 6 points of ME E3900 and/or ME E3901 and/or ME E3998 can be counted toward the 12-point technical elective requirement.

• Courses in engineering science and courses in engineering design must have a combined credit of 48 points. Completion of the core curriculum in mechanical engineering leads to satisfying 44.5 out of these 48 points. The technical elective requirement allows you to satisfy the remaining 3.5 points. A list of technical electives can be found here.

Highly qualified students are permitted to pursue an honors course consisting of independent study under the guidance of a member of the faculty.
 
• First- and second-year students are required to take the Botwinick Gateway Laboratory course in computerization and technology, E1102.

In addition, at least one professional-level course is required from the list here.

• First- and second-year students must also complete math, physics, chemistry, computer science, and physical education requirements.

Mechanical Engineering Core Curriculum

Mechanical Engineering Laboratory I MECE E3018
Mechanical Engineering Laboratory II MECE E3028
Mechanical Engineering Laboratoriy III MECE E3038
Introduction to Electrical Engineering ELEN E1201
Fluid Mechanics MECE E3100
Thermodynamics MECE E3301
Heat Transfer MECE E3311
Computer Graphics and Design MECE E3408
Computer-aided Design MECE E3409
Engineering Concept & Design MECE E3420

Engineering Design MECE E3430
Engineering Mechanics ENME E3105
Mechanics of Solids ENME E3113
Classical Control Systems MECE E3601
Materials and Processes in Manufacturing MECE E3610
 

Back to top

In what semester/year should I begin taking courses toward the major/concentration? What is the first course I should take?
All those who are interested in mechanical engineering are strongly recommended to take the course ENME E3105 Engineering Mechanics in the sophomore year.

Back to top

What is the structure of the major or concentration?
With the exception of one course (ENME E3105 Mechanics) that ME majors are encouraged to complete during the sophomore year, the first two years of study is an introduction to general principles of science and engineering and a broad range of subjects in the humanities and social sciences. There is, however, room in the program to complete ENME E3105 Mechanics in the junior year if you are not able to complete it during the sophomore year.

In your junior and senior years, you begin to study courses specific to your major. This consists of the core curriculum which includes: ME laboratory I, II, and III, Introduction to Fluid Mechanics, Thermodynamics, Heat Transfer, Computer Graphics and Design, Computer-aided Design, Engineering Design, Circuits and Systems, Applied Mathematics I, Engineering Mechanics, Mechanics of Solids, Classical Control Systems, and Manufacturing Processes. In addition, a total of 12 points of technical electives, including 9 from the ME Department, must be taken. A valid technical elective is any course offered by SEAS at the 3000 level or above. The required junior and senior courses allow room for both nontechnical electives (towards the 27-point total) as well as the technical electives. Through these technical electives you will have an opportunity to explore subject areas beyond the core. Your advisor can assist you in providing an overview of the subject matter covered in the elective courses.

Back to top

How do I declare a major or concentration in this department?
To declare a major, a student must complete a form in the Sophomore Class Center. Prior to that, each department, including the Mechanical Engineering Department, will have an open house for the prospective students to visit the department, the department's laboratories, senior students, and faculty members. An information packet will be distributed at the open house. Students interested in mechanical engineering are strongly advised to attend the open house.

Back to top

How does the department allocate advisers?
Undergraduate students in the Department of Mechanical Engineering are advised by the faculty of the Undergraduate Committee, consisting of:

Jeffrey Kysar (Committee chair)
Jung-Chi Liao
Arvind Narayanaswamy
Elon Terrell
Qiao Lin
Chee Wei Wong

Each student is assigned a faculty adviser from the committee upon declaring their ME major (typically during their sophomore year). This advisor will meet with the student regularly to help with many issues, both academic and otherwise.

Please contact our Student Affairs Officer, Becca Chambers at rc2421@columbia.edu with any questions.

Back to top

Will studying abroad enhance this major/concentration?
The department currently does not have a “study abroad program,” but students are encouraged to gain a unique experience by studying abroad, particularly during their sophomore year. The Student Affairs Office manages the study abroad program.

Information on Studying Abroad

Back to top

What research opportunities exist in or through the department during the academic year?
Along with teaching, the mechanical engineering faculty members are actively engaged in research and offer the opportunity for undergraduate students to participate. Pursuing research activities as an undergraduate student can be very exciting and complement your educational experience. The activities can range from setting up and running an experiment to conducting analytical or numerical analyses. Work is directly under the supervision of a faculty member and often involves graduate students. This opportunity allows students to gain unique hands-on experience in world-class basic and applied research. It is also a highly recommended addition to the resumes of students who intend to pursue graduate studies and research.

To find a research opportunity, visit the department's Web page, and browse through the faculty research activities to identify an area that you find interesting. You should then contact the faculty member directly to learn more about their area of research and inquire if undergraduate research positions are available. Such opportunities are also listed in the URIP booklet (undergraduate research involvement program) compiled and published annually by SEAS, although most recent information is found best by contacting the faculty directly.

Every year, the department will also post work-study positions with the work-study office.

To formalize this involvement, the department offers two courses: "Projects in Mechanical Engineering" (MECE E3900-E3901) and "Honors Tutorial in Mechanical Engineering" (MECE E3998), both worth up to 3 points of research credit. Credits and scope of work are to be arranged with a faculty advisor, following the guidelines in the bulletin. However, research activities are not only limited to these junior and senior courses. Interested students are encouraged to pursue the possibility of research at any point of their undergraduate years, since summer research positions in the department's laboratories and activities for freshmen and sophomores might also be available.

Back to top

What research, internship, and fellowship opportunities exist during the summer months and how do I participate?
The summer break is the ideal time to gain experience in industry, effectively preparing students for an exciting career. A summer internship working for a company can have many benefits, such as: providing insight in the field, making a valuable addition to your resume when you apply for jobs at graduation, establishing extremely valuable contacts, and providing summer income. It also gives you the chance to actually practice the engineering and science you have been learning in courses at Columbia.

To find summer internship opportunities, you can ask individual faculty members if they have industry contacts in your areas of interest. The department also maintains a database of alumni with their work contact information, available through the department's Web site. The students can send their resume with a cover letter, inquiring if summer internships are available.

Another important source of help is the Columbia Center for Career Education (CCE). CCE exists as a bridge for students between the academic world and their future careers (http://www.cce.columbia.edu/). When you register to use the programs and services at CCE you will receive email notices from CCE when potential employers of interest are visiting the campus to conduct interviews, etc. Your resume will be needed by CCE by certain deadlines depending on the date of the visit of the companies. Registering with CCE also entitles you to access to their internship databases and other services including career counseling, alumni connections, information about other upcoming events, and so on.

An alternative and highly stimulating way to spend the summer is by participating in an REU program (Research Experience for Undergraduates). The admission criteria may be quite stringent, but participation in these programs is a prestigious addition to the student's resume. Sponsored by the National Science Foundation (NSF), the REU program provides opportunities for undergraduates to participate in state-of-the-art research either in the department or at REU sites in other institutions throughout the country for about ten weeks. REU sites are established in all fields of science, mathematics, and engineering. The students will work with graduate students and a faculty mentor on a current research project. The experience will also be enriched by seminars as well as extracurricular social interactions. Students are granted stipends, and in some cases, assistance with housing and travel. You will find the full list of REU sites, as well as application procedures and deadlines, at the following website: http://www.nsf.gov/home/crssprgm/reu/.

For those preferring to remain at Columbia during the summer, there may be several Columbia University REUs. These will be listed at the NSF Web site.

Finally, students can also gain experience in world-class research by working in the research group of a member of faculty in the Mechanical Engineering Department or other department on campus. For mechanical engineering, go to the departmental Web page and browse through the faculty research activities to find areas of interest. Contact faculty directly to find out more about their research and to establish if they have summer positions available. Positions may also be posted on the department’s web site.

Back to top

What kinds of career opportunities would this major or concentration prepare me for?
In general, engineering forms a solid foundation for students who undertake careers in many areas requiring good problem-solving skills, not only in engineering but also in medicine, law, or business. Mechanical engineers are especially well-prepared to play central engineering and management roles in industries that involve parts in motion and energy conversion, such as the automotive, aerospace, biomedical, and manufacturing industries. Most high-growth areas, such as fuel cell power generation and semiconductor manufacturing rely heavily on mechanical engineers to develop high-performance and cost-efficient systems. Mechanical engineers are often responsible for taking concepts to market and taking care of mechanical, thermal, and fluidic design, as well as manufacturing. Due to the broad and global perspective of the mechanical engineering curriculum, mechanical engineers often take top-level roles such as leading the system-level design of products as well as management positions. More information on mechanical engineering careers can be found at the American Society of Mechanical Engineers (ASME) Web site: http://www.asme.org/.

The following is a partial list of companies which have hired our graduates within the last five years:
 

Air Products Flack & Kurtz Motorola
Allied Signal General Electric Open Microsystems
AMS General Motors Parker Hanifin Corp.
Andersen Consulting Grant Thornton, NYC Pratt and Whitney
Applied Recycling Grey Pilgrim (Robotics) Procter and Gamble Corp.
AT&T Honda, OH Raytheon, E&C
BearStearn IBM SEER Technologies
Boeing International Paper Schlumberger
Burns & Roe Hyman Construction, MD Stone & Webster
Carthage Machine Co. Kidder, Peabody & Co., NY Symbol Technology
NY, Cessna Lucent Technology Technovation Inc.
Computer Science Corp. Market Data Corp. Texas Instruments
Con Edison Martin Marietta Tyco Submarine Systems, Ltd.
Ernst & Young Merrill Lynch Ward Leonard Electric
Exxon Merck WCW Consulting
Ford Motor Co. Mid-west Automation Weidlinger Consulting

In addition, about one-quarter to one-third of our students go on to graduate study.

Back to top

What is the best way to prepare for graduate school?
Two things a student should do in order to prepare himself/herself for graduate studies: (1) have a GPA of more than 3.0 for admission to graduate programs in reputable Graduate Schools and more than 3.5 to compete for a teaching/research assistantship and (2) take a project course(s) to do research in the area that might interest you in your graduate studies. To be successful in graduate studies, the student needs to have good analytical ability, creativity, and independence. Any courses you take and/or any research you do that can enhance these qualities in you will help you get into a good graduate program and be successful in your study.
 

Back to top

What student clubs, committees, and/or activities are offered within or through the department?
The Mechanical Engineering Department at Columbia University hosts an impressive range of student-led clubs and activities. First, there is an ASME student chapter, through which mechanical engineering undergraduates organize professional and social activities, such as plant tours, conference visits, and happy hours with faculty. All ME students are strongly urged to become a member of the student chapter and actively participate. Elections are held annually to fulfill the club's positions. Visit their Web site for up-to-date information on activities and how to get involved: http://www.seas.columbia.edu/asme/.

The department also has two very successful project-oriented clubs: the Solar Splash boat club and the Formula SAE racing team. The Solar Splash project consists of designing, building, and racing an electric-powered boat, using solar panels and batteries. Visit the club’s Web site to learn more about the its activities at http://www.seas.columbia.edu/solarsplash/.

Students in the SAE club also conceive, build, and race their own vehicle: a single seat, Formula-type racecar. For more information go to http://www.columbia.edu/cu/sae/.

Students in all majors are highly encouraged to participate, since these projects require skills from various disciplines. These clubs provide a unique and exciting engineering experience, requiring multidisciplinary teamwork to drive the project from start to finish. All interested students should contact the student team leaders and attend a club meeting. More information can be found on the club Web pages (listed above), or through the faculty advisors: Mr. Stark for the Solar Splash boat club and Professor Hong for the SAE race car club.

Other organizations specifically concerned with student engineers, include:
Engineering Student's Council (http://www.columbia.edu/cu/esc/);
Society for Women Engineers (http://www.seas.columbia.edu/swe/);
Society for Black Engineers (http://www.columbia.edu/cu/nsbe/);
Society for Asian Engineers (http://www.columbia.edu/cu/aase/);
Society for Hispanic Engineers (http://www.columbia.edu/cu/shpe/).
 

Back to top

How does one receive departmental honors in this department?
There are several departmental honors that each year. These are listed in the next item along with the criterion used for each honor. Some of the awards are based on GPA. Others are initiated by nominations from the faculty and staff, with input from any relevant source welcome. Decisions are made by the entire faculty at one of their meetings toward the end of the spring semester.
 

Back to top

What awards and prizes are sponsored by the department?
The department has established the following awards, given annually to awardees during Class Day in May:
The Edward A. Darling Prize in Mechanical Engineering: Established in 1903 by a gift from the late Edward A. Darling, formerly superintendent of buildings and grounds, it is a certificate and prize awarded annually to the most faithful and deserving student of the graduating class in mechanical engineering. It is given to an outstanding student who has contributed significantly to his or her classes and department.

The William A. Hadley Award in Mechanical Engineering: Established in 1973 by Lucy Hadley in memory of her husband, the award, in the form of a certificate and prize, is given to a student in the graduating class in mechanical engineering who has exemplified the ideals of character, scholarship, and service of Professor Hadley. It is given to the student who demonstrates both scholarship and engineering professionalism.

The James F. Parker Memorial Award (The Mechanical Engineering Design Award): James F. Parker served and represented Columbia engineering students as their dean from 1975 to 1984. He also distinguished himself in the pursuit and analysis of two-dimensional art. In recognition of his special combination of talents and their integration, the School of Engineering and Applied Science salutes the graduating student who has distinguished her or himself as a designer. A person of creative and innovative inclination receives the James Parker Medal, as evidenced by outstanding performance in courses integrating engineering analysis and design.

American Society of Mechanical Engineers Award: It is awarded in recognition of outstanding efforts and accomplishments on behalf of the American Society of Mechanical Engineers Student Section at Columbia, either as an officer of ASME or as a member making significant contributions.

Mechanical Engineering Certificate of Merit: It is awarded in recognition of excellence in undergraduate studies.


500 W. 120th St., Mudd 220, New York, NY 10027    212-854-2966           
©2012 Columbia University