James Hone

Wang Fon-Jen Professor of Mechanical Engineering
240 S.W. Mudd, Mail Code 4703
Tel: (212) 854-6244
Fax: (212) 854-3304
Spring '19 office hours: By appointment only

The Hone group creates and studies nano-materials and nano-structures for a wide range of applications and areas of basic science. We work extensively with atomically thin two-dimensional (2D) materials, such as graphene, with interest in synthesis, mechanical properties, and electronics. In particular, we have developed techniques to ‘stack’ 2D materials into novel ‘van der Waals heterostructures’. We use these techniques to study 2D materials in the clean limit and to achieve new properties and functionality.  We also use 2D materials for opto-electronic applications, novel nano-electromechanical devices, and flexible electronics. We also have a significant effort in nano-biology, where we create tools to measure forces exerted by single cells and seek to understand how cells use these forces to test the mechanical properties of substrates.

Recently named Wang Fon-Jen Professor of Mechanical Engineering.

Recent Publications:

1.         Wolfenson, H., et al., "Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices", Nature Cell Biology  18,  33-37 (2016).

2.         Woessner, A., et al., "Near-field photocurrent nanoscopy on bare and encapsulated graphene", Nature Communications  7,  10783 (2016).

3.         Tsen, A.W., et al., "Nature of the quantum metal in a two-dimensional crystalline superconductor", Nature Physics  12,  208-212 (2016).

4.         Ni, G.X., et al., "Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene", Nature Photonics  10,  244-248 (2016).

5.         Li, J.I.A., et al., "Negative Coulomb Drag in Double Bilayer Graphene", Physical Review Letters  117,  046802 (2016).

6.         Chen, C.Y., et al., "Modulation of mechanical resonance by chemical potential oscillation in graphene", Nature Physics  12, 240-245         (2016).

7.         Woessner, A., et al., "Highly confined low-loss plasmons in graphene-boron nitride heterostructures", Nature Materials  14,  421-425 (2015).

8.         Wang, L., et al., "Evidence for a fractional fractal quantum Hall effect in graphene superlattices", Science  350,  1231-1234 (2015).

9.         Kim, Y.D., et al., "Bright visible light emission from graphene", Nature Nanotechnology  10,  676-681 (2015).

11.       Cui, X., et al., "Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform", Nature Nanotechnology  10,  534-540 (2015).

13.       Zandiatashbar, A., et al., "Effect of defects on the intrinsic strength and stiffness of graphene", Nature Communications  5,  3186 (2014).

14.       Wu, W.Z., et al., "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics", Nature  514,  470-474 (2014).

15.       van der Zande, A.M., et al., "Tailoring the Electronic Structure in Bilayer Molybdenum Disulfide via Interlayer Twist", Nano Letters  14,  3869-3875 (2014).

16.       van der Zande, A.M., et al., "Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide", Nature Materials  12,  554-561 (2013).

17.       Rangamani, P., et al., "Decoding Information in Cell Shape", Cell  154,  1356-1369 (2013).

18.       Mak, K.F., et al., "Tightly bound trions in monolayer MoS2", Nature Materials  12,  207-211 (2013).

19.       Lee, G.H., et al., "High-Strength Chemical-Vapor Deposited Graphene and Grain Boundaries", Science  340,  1073-1076 (2013).

20.       Gan, X.T., et al., "Chip-integrated ultrafast graphene photodetector with high responsivity", Nature Photonics  7,  883-887 (2013).

21.       Dean, C.R., et al., "Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices", Nature  497,  598-602 (2013).

22.       Chen, C.Y., et al., "Graphene mechanical oscillators with tunable frequency", Nature Nanotechnology  8,  923-927 (2013).

23.       Ghassemi, S., et al., "Cells test substrate rigidity by local contractions on submicrometer pillars", Proceedings of the National Academy of Sciences of the United States of America  109,  5328-5333 (2012).

24.       Mak, K.F., et al., "Atomically Thin MoS(2): A New Direct-Gap Semiconductor", Physical Review Letters  105,  136805 (2010).

25.       Lee, C., et al., "Frictional Characteristics of Atomically Thin Sheets", Science  328,  76-80 (2010).

26.       Dean, C.R., et al., "Boron nitride substrates for high-quality graphene electronics", Nature Nanotechnology  5,  722-726 (2010).

27.       Chen, C., et al., "Performance of monolayer graphene nanomechanical resonators with electrical readout", Nature Nanotechnology  4,  861-867 (2009).

28.       Lee, C., et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science  321,  385-388 (2008).


500 W. 120th St., Mudd 220, New York, NY 10027    212-854-2966           
©2012 Columbia University